CENTRE INTERNATIONAL D'ETUDES SUPERIEURES EN SCIENCES AGRONOMIQUES DE MONTPELLIER (MONTPELLIER SUPAGRO)

THESE

pour obtenir le grade de

Docteur du Centre International d'Etudes Supérieures en Sciences Agronomiques de Montpellier

Ecole Doctorale : Sciences des Procédés et Sciences des Aliments Spécialité : Génie des Procédés

CARACTERISATION DE LA MESOSTRUCTURE DU CAOUTCHOUC NATUREL PAR SEC-MALS, RELATIONS AVEC LES PROPRIETES RHEOLOGIQUES

soutenue publiquement par

KIM Chandy

le 14 septembre 2009 devant le jury composé de

M. Jean L. LEBLANC	Professeur, Université Paris VI	Rapporteur
M. Paul COLONNA	Directeur de recherche, INRA Nantes	Rapporteur
M. Jean-François PILARD	Professeur, Université du Maine	Examinateur
M. Stéphane GUILBERT	Professeur, Montpellier SupAgro	Directeur de thèse
M. Jérôme SAINTE BEUVE	Chercheur, CIRAD Montpellier	Examinateur
M. Frédéric BONFILS	Chercheur, CIRAD Montpellier	Examinateur

CENTRE INTERNATIONAL D'ETUDES SUPERIEURES EN SCIENCES AGRONOMIQUES DE MONTPELLIER (MONTPELLIER SUPAGRO)

THESE

pour obtenir le grade de

Docteur du Centre International d'Etudes Supérieures en Sciences Agronomiques de Montpellier

Ecole Doctorale : Sciences des Procédés et Sciences des Aliments Spécialité : Génie des Procédés

CARACTERISATION DE LA MESOSTRUCTURE DU CAOUTCHOUC NATUREL PAR SEC-MALS, RELATIONS AVEC LES PROPRIETES RHEOLOGIQUES

soutenue publiquement par

KIM Chandy

le 14 septembre 2009 devant le jury composé de

M. Jean L. LEBLANC	Professeur, Université Paris VI	Rapporteur
M. Paul COLONNA	Directeur de recherche, INRA Nantes	Rapporteur
M. Jean-François PILARD	Professeur, Université du Maine	Examinateur
M. Stéphane GUILBERT	Professeur, Montpellier SupAgro	Directeur de thèse
M. Jérôme SAINTE BEUVE	Chercheur, CIRAD Montpellier	Examinateur
M. Frédéric BONFILS	Chercheur, CIRAD Montpellier	Examinateur

A mes parents

REMERCIEMENTS

Ce travail a été réalisé au laboratoire de physico-chimie du caoutchouc naturel du CIRAD-PERSYST (Centre de Coopération Internationale en Recherches Agronomiques pour le Développement), UMR IATE 1208 « Ingénierie des Agro-polymères et des Technologies Emergentes ». Le partenariat industriel est la plantation d'hévéa « Chup » qui est la plus grande plantation d'hévéa au Cambodge (18 000 ha de concession). Je tiens à remercier chaleureusement toutes les personnes qui ont contribué de près ou de loin à la réalisation et à bon déroulement de ce travail.

Je ne saurais présenter ce mémoire sans témoigner à mon directeur de thèse, Professeur Stéphane Guilbert (Montpellier SupAgro), ma profonde reconnaissance et chaleureux remerciements. J'ai trouvé en lui un directeur de thèse passionné et respectueux. Mes vifs remerciements vont également aux deux rapporteurs de cette thèse le Professeur Jean Léopold Leblanc et Monsieur Paul Colonna ; ainsi qu'au Professeur Jean-François Pilard qui a accepté d'être membre du jury afin d'examiner ce travail.

J'adresse également ma profonde gratitude à Mme Marie-Hélène Morel et M. André Collet pour leur participation au comité de thèse et leurs conseils qui ont permis à l'avancement des travaux de cette thèse. Je remercie M. André Deratani et Mme Valérie Bonniol de l'Institut Européen des Membranes (IEM) de m'avoir permis de réaliser des manipulations dans leur laboratoire et de leur aide. Je remercie également le Professeur François Ganachaud de l'Ecole de Chimie de Montpellier pour ses conseils.

Je suis très reconnaissants envers M. Frédéric Bonfils, chercheur au CIRAD, qui a encadré cette thèse. Je garde avec lui un excellent souvenir des 9 années de formation à la recherche scientifique et de collaboration dans le cadre des projets de développement du caoutchouc naturel cambodgien. Son soutien constant m'a permis de réaliser ce travail. Que cette collaboration se poursuive. M. Jérôme Sainte-Beuve a été très passionné par le travail de cette thèse et a surveillé de près son avancement. Je remercie les personnes du CIRAD, en particulier M. Antoine Leconte, Mme Christine Char, Mme Chantal Segonne, M. Christian Aymard, M^{lle} Clara Lachgar, M. Didier Montet, M. Mathieu Weil, M. Pierre Pruvost et M. Serge Palu pour leur gentillesse et leur aide. Je souhaite une heureuse retraite à Mme Chantal Segonne. J'exprime ma reconnaissance à M. Yin Song et M. Seng Salan, directeur et directeur adjoint de l'Institut de Recherches sur le Caoutchouc au Cambodge qui ont accordé un financement la partie expérimentale au Cambodge. Je remercie également à tout le personnel là-bas pour leur assistance, en particulier M. Hort Tech Meng, M. Hun Kimsan, M^{lle} Im Sopheary, M. Ngourn Layin et M. Sourn Dara. Je remercie le chef du village 32 et ses enfants de leur collaboration. Je remercie aussi tous mes collègues à l'Institut de Technologie du Cambodge (ITC) qui m'ont beaucoup soutenu, en particulier M. Kor Chun, Mme Line Sothearith, Mme Phoeung Sakona, Mme Srey Sokunmalis, Mme Tea Channy et M. Thavarith Chunhieng.

Je souhaite exprimer mes remerciements à M. Mak Kimhong, directeur de la plantation d'hévéa Chup et son personnel, en particulier M. Heng Doeun et M. Ou Vuthy, pour leur assistance dans les préparations des échantillons. Je remercie Phanna et Sophy qui m'ont assisté pour les préparations des échantillons dans le cadre de leurs stages de fin d'étude.

Je remercie l'Ambassade de France à Phnom Penh et le CIRAD, notamment la DRS, d'avoir financé cette thèse. Les chargés de mission du service de coopération et d'action culturelle et la réceptionniste à l'Ambassade de France à Phnom Penh : M. Jérémy Vanbreugel, M. Lucien Bruneau, M^{lle} Anne-Cécile Richard et Mme Nuon Maly ont été très gentils. Je remercie Mme Pigière, Mme Sandrine Nicolas, M^{lle} Emilie Tonnolière, Mme Cathy Delimi, gestionnaire des bourses du CROUS, et Mme Colle, gestionnaire des bourses de l'EGIDE.

Je souhaite exprimer mes remerciements à M. Jacques Maillet, directeur de Montpellier SupAgro, au Professeur Bruno Blondin, directeur de l'école doctorale de Sciences des Aliments et Sciences des Procédés (ED SPSA), ainsi que Mme Régine Grasmick, secrétaire de l'ED SPSA, Mme Monique Wojewoda et Mme Martine Barraud secrétaires à Montpellier SupAgro pour les inscriptions.

Je remercie Najat, stagiaire au laboratoire, pour son aide dans la réalisation des essais sur le D-MDR3000. J'ai beaucoup apprécié les relations amicales des stagiaires et étudiant(e)s à Montpellier que j'ai connu(e)s : By, Duy, Duong, Emmanuelle, Emma, Elodie, Erwann, Eugène, Félix, Jute, Joe, Jonathan, Julien, Laetitia, Luis, Mai, Marie,

Marine, Marlène, Mickaël, Mohammed, Nathalie, Noi, Noura, Pascal, Pascaline, Por, Pook, Rath, Stéphanie, Sounisa, Sun et Yohan.

J'adresse également mes remerciements à la communauté cambodgienne à Montpellier qui a été très sympathique, en particulier M. Bunna, M. Hour, M. Hoy, Mme Kim, M. Phal, M. Rith, Mme Roeun, M. Sim, Mme Thach, Mme Vy.

Mes remerciements vont aussi aux ami(e)s étudiant(e)s cambodgien(ne)s qui m'ont soutenu moralement depuis mon premier séjour à Montpellier en 2000 jusqu'à présent : Bovy, Chou, Janin, Kimlong, Pini, Pisey, Polyva, Proyuth, Samedy, Seng, Soeng, Sokchea, Sophat, Sophornvy, Sophoan, Sothea, Sourkea, Vuthy et Vorleak. Pini a été un très bon cuisinier et m'a préparé les bons diners. Polyva a été très amical et sympathique. Samedy a été très amicale. Sophornvy a préparé des bons repas. Vorleak m'a soigné quand j'étais malade et je lui souhaite une bonne réalisation de sa thèse. Je remercie également les ami(e)s à Lyon, Nice, Paris et Toulouse de m'avoir organisé des visites agréables.

Enfin, je remercie ma famille et mes parents, pour leurs encouragements constants et leur soutien dans mon travail.

« La seule chose absolue dans un monde comme le nôtre c'est l'humour. » Albert Einstein

RESUME

Ce mémoire de thèse présente les résultats d'une étude sur la mésostructure du caoutchouc naturel (NR) et les relations entre la mésostructure et certains paramètres rhéologiques. Nos principaux objectifs étaient de caractériser la mésostructure du NR par chromatographie d'exclusion stérique couplée avec un détecteur à diffusion de la lumière (SEC-MALS) et de trouver des critères rhéologiques qui permettent de mieux discriminer des échantillons de NR pour mieux prévoir leurs comportements lors de la mise en œuvre. Afin de répondre à ce dernier point, nous nous sommes intéressés aux relations mésostructure-propriété rhéologique.

La caractérisation de la mésostructure d'échantillons de NR par SEC-MALS a révélé une élution anormale pour le NR. En effet, contrairement à un échantillon de polyisoprène synthétique, les M_{wi} augmentent à partir d'un certain volume d'élution (V_e), au lieu de continuer à diminuer. Ce phénomène montre que des nanoagrégats sont retardés et élués à des V_e pour lesquels, selon la théorie de l'exclusion stérique, seules des petites macromolécules sont attendues. Ces nanoagrégats semblent relativement compacts et s'adsorbent probablement sur la phase stationnaire des colonnes de la SEC. Contrairement aux résultats de la littérature, nos résultats ont également montré que la partie soluble du NR est constitué d'un mélange de chaînes de polyisoprène quasiment linéaires et de nanoagrégats très compacts.

La caractérisation rhéologique du NR a été réalisée avec un viscosimètre Mooney à vitesse variable. L'étude a été focalisée sur un grade particulier de NR : le TSR5CV60. Pour ce grade, la viscosité Mooney (V_R) obtenue en utilisant une vitesse du rotor de 0,05 tr/min (V_{R0.05}) permet une discrimination des échantillons de même V_R obtenue avec la vitesse normalisée du rotor de 2 tr/min (V_{R2}, norme ISO 289). Les structures macromoléculaires de ces échantillons, obtenues par SEC-MALS, différaient essentiellement dans la partie des « longes chaînes ». Nous avons montré que la V_{R2} est corrélée à la masse molaire moyenne en nombre (M_n) mais pas à la masse molaire moyenne en poids (M_w). Par contre, la V_{R0.05} est très bien corrélée à la M_w . La V_{R2} n'est donc pas assez discriminante car insensible aux longues chaînes, probablement à cause d'une fracture du matériau en tout début de test (surcharge de contrainte). Pour les échantillons non-CV (TSR5 et TSR10), la relation entre la V_{R0.05} et la M_w est très probablement dépendante du taux de gel.

Mots clés : Caoutchouc naturel, *Hevea brasiliensis*, polyisoprène, mésostructure, gel, agrégats, ramifications, SEC-MALS, viscosimètre Mooney à vitesse variable.

CIRAD-PERSYST, UMR IATE

TA B62/16, 73, rue J.F. Breton, 34398 Montpellier Cedex 5, France.

ABSTRACT

This thesis entitled "Characterization of the mesostructure of natural rubber using SEC-MALS, relations with rheological parameters" presents results of a study on the mesostructure of natural rubber (NR), and the relations between the mesostructure and some rheological parameters. Our main objectives were to characterize the mesostructure of NR using size-exclusion chromatography with online multi-angle light scattering (SEC-MALS) and to find rheological criteria which enable better discriminating between NR samples in order to better predict their processabilities. In order to answer to the last point, we were interested in the relations mesostructure-rheological property.

The characterization of the mesostructure of NR samples using SEC-MALS showed abnormal elution behaviour for the NR. In contrast with the synthetic polyisoprene sample, the $M_{\rm wi}$ increased after a certain elution volume (V_e) instead of continuing to decrease. This phenomenon indicated that nanoaggregates were retarded and eluted at V_e for which, according to the size-exclusion theory, only small macromolecules were expected. These nanoaggregates seem to be compact and probably adsorbed on the SEC's columns packing. In the contrary to the results of the literature, our results showed that the soluble fraction of NR consisted of rather linear polyisoprene chains and very compact nanoaggregates.

The rheological characterization of NR was carried out with a variable rotor speed Mooney viscometer. The study was focused on a particular grade of NR: TSR5CV60. For this grade, the Mooney viscosity (V_R) obtained with a rotor speed of 0.05 rpm (V_{R0.05}) enable discriminating samples having the same V_R obtained at standard rotor speed of 2 rpm (V_{R2}, standard ISO 289). The macromolecular structures of these samples, obtained with SEC-MALS, were different mainly in the "long chains" fraction. We showed that V_{R2} was correlated with the number-average molar mass (M_n) but not with the weight-average molar mass (M_w). The V_{R0.05} was however well correlated with M_w . The V_{R2} was not a sufficient discriminative criteria because insensitive to long chains, probably due to material failure at the starting of the test (stress overshoot). For non-CV samples (TSR5 and TSR10), the relation between V_{R0.05} and M_w depended likely on the gel rate.

Keywords: Natural Rubber, *Hevea brasiliensis*, polyisoprene, mesostructure, gel, aggregates, branching, SEC-MALS, variable speed Mooney viscometer.

CIRAD-PERSYST, UMR IATE

TA B62/16, 73, rue J.F. Breton, 34398 Montpellier Cedex 5, France.

LISTE DES ABBREVIATIONS

BHT	2,6-di-tert-butyl-4-méthylphénol	2,6-di-tert-butyl-4-methylphenol
D-MDR	Rhéomètre dynamique à cavité oscillante	Dynamical moving die rheometer
DMM	Distribution des masses molaires	Molar masses distribution
DMM ₀	DMM native	<i>Native</i> DMM
DRC	Teneur en caoutchouc sec	Dry rubber content
DRI	Détecteur d'indice de réfraction	Refractive index detector
Eq.	Equation	Equation
ISO	Organisation Internationale pour la	International Organization for
	Normalisation	Standardization
LS	Diffusion de la lumière	Light scattering
MALS	Détecteur à diffusion de la lumière multi-angulaire	Multi-angle light scattering detector
ML(1+4)100	Viscosité Mooney standard	Standard Mooney viscosity
MMD	Distribution des masses molaires	Molar masses distribution
MMD_0	MMD native	<i>Native</i> MMD
RMN	Résonance magnétique nucléaire	Nuclear magnetic resonance
NR	Caoutchouc naturel	Natural rubber
PI	Poly(cis-1,4-isoprène)	Poly(cis-1,4-isoprene)
PS	Polystyrène	Polystyrene
RI	Indice de réfraction	Refractive index
SEC	Chromatographie d'exclusion de taille (ou stérique)	Size-exclusion chromatography
SEC-MALS	SEC couplée avec un détecteur à	SEC coupled with online multi-
	diffusion de la lumière multi- angulaire en ligne	angle light scattering
SMR	Caoutchouc Standard Malais	Standard Malaysian Rubber
SR	Caoutchouc synthétique	Synthetic rubber
TBABr	Bromure de tétrabutylammonium	Tetrabutylammonium bromide
TFA	Acide trifluoroacétique	Trifluoroacetic acid
THF	Tétrahydrofurane	Tetrahydrofuran
ThFFF	Fractionnement par couplage flux-	Thermal field-flow fractionation
	force thermique	
TMG	1,1,3,3-tétraméthylguanidine	1,1,3,3-tetramethylguanidine
TMGTFA	Trifluoroacétate de 1,1,3,3-	1,1,3,3-tetramethylguanidinium
	tétraméthylguanidinium	trifluoroacetate
TSR	Caoutchouc techniquement spécifié	Technically Specified Rubber
TSR5CV	TSR à viscosité stabilisée	TSR with constant viscosity
uM	Unité Mooney	Mooney unit

A_2	Second coefficient du viriel	Second virial coefficient
С	Concentration	Concentration
dn/dc	Incrément d'indice de réfraction	Refractive index increment
f	Fonctionnalité de ramifications	Functionality of chain branching
F(n)	Fonction de correction	Corrective function
g	Facteur de contraction (R_g)	Contraction factor (R_g)
<i>g</i> '	Facteur de contraction (viscosité	Contraction factor (intrinsic
	intrinsèque)	viscosity)
G'	Module élastique	Storage modulus
G"	Module visqueux	Loss modulus
G^*	Module complexe	Complex modulus
Ip	Indice de polymolécularité (M_w/M_n)	Polydispersity index (M_w/M_n)
Κ	Constante de normation	Optical constant
т	Nombre de branches par chaîne	Number of branching points per chain
$M_{ m i}$	Masse molaire de la tranche <i>i</i> du	Molar mass of the ith
	chromatogramme	chromatogram's elution slice
M _n	Masse molaire moyenne en nombre	Number-average molar mass
$M_{ m w}$	Masse molaire moyenne en poids	Weight-average molar mass
$M_{\rm z}$	Masse molaire moyenne en z	z-average molar mass
n	Indice de fluidité	Fluidity index
P_0	Plasticité initiale	Initial plasticity
$R_{\rm g}$ ou $\langle s^2 \rangle^{1/2}$	Rayon de giration moyenne en z	z-average radius of gyration
$R_{\rm gi}$	Rayon de giration moyenne en z de la	z-average radius of gyration of the
	tranche <i>i</i> du chromatogramme	ith chromatogram's elution slice
$R_{ m h}$	Rayon hydrodynamique	Hydrodynamic radius
$R_{ heta}$	Rapport de Rayleigh pour l'angle θ	Rayleigh ratio at angle θ
Ve	Volume d'élution	Elution volume
V_h	Volume hydrodynamique	Hydrodynamic volume
V _R	Viscosité Mooney	Mooney viscosity
V _{RX}	V_R obtenue à une vitesse du rotor	V_R measured at a rotor speed of x
	tournant à x tours par minute	rpm
Г	Couple Mooney	Mooney torque
$\Gamma_{ m cyl}$	Couple de torsion entre cylindres coaxiaux	Torque between co-axial cylinders
$\Gamma_{\rm dis}$	Couple de torsion entre disques	Torque between rotating parallel
	parallèles en rotation	discs
Ω	Vitesse angulaire du rotor du	Angular speed of rotor of Mooney
	viscosimètre Mooney	viscometer
γ	Taux de cisaillement	Shear strain

γ́	Vitesse de cisaillement	Shear rate
δ	Angle de perte	Loss angle
η	Viscosité de cisaillement	Shear viscosity
$[\eta]$	Viscosité intrinsèque	Intrinsic viscosity
η_0	Viscosité limite	Zero-shear viscosity
θ	Angle de diffusion	Scattered light detection angle
λ	Longueur d'onde de la lumière	Light wavelength
λ_0	Longueur d'onde de la lumière	Incidental light wavelength
V	Exposant de Flory	Flory exponent
τ	Contrainte de cisaillement	Shear stress
Ø	Fréquence d'oscillation	Oscillation frequency

SOMMAIRE

INT	RODUCTION GENERALE	1
CHA	APITRE 1 : SYNTHESE BIBLIOGRAPHIQUE	5
1.1	Introduction	6
1.2	Constitution chimique des macromolécules du caoutchouc naturel	6
1.3	Distribution des masses molaires du caoutchouc naturel	7
	1.3.1 Les différents types de distribution des masses molaires du caoutcho	ис
	naturel	7
	1.3.2 Effets des paramètres agronomiques, de l'usinage et de la transformation	on
	sur la distribution des masses molaires du caoutchouc naturel	9
1.4	Ramification des chaînes du caoutchouc naturel	10
	1.4.1 Généralité sur la ramification des polymères	10
	1.4.2 Ramification des macromolécules du caoutchouc naturel	12
	1.4.3 Principe et théorie de la SEC-MALS	14
1.5	Gel du caoutchouc naturel	17
	1.5.1 Définitions	17
	1.5.2 Formation du gel dans le caoutchouc naturel	17
	1.5.3 Effet de l'usinage et de la transformation du caoutchouc naturel sur le ta	ux
	de gel	18
1.6	Viscosité Mooney du caoutchouc naturel	19
	1.6.1 Introduction	19
	1.6.2 Principe du viscosimètre Mooney	20
	1.6.3 Viscosité Mooney : un test normalisé mais un critère insuffisant	21
	1.6.4 Viscosité Mooney à vitesse variable	22
	1.6.5 Transformation de la viscosité Mooney en viscosité de cisaillement	22
	1.6.6 Relaxation Mooney du caoutchouc naturel	24
1.7	Relation entre la viscosité Mooney du caoutchouc naturel et sa mésostructure	25
1.8	Méthodologie de la recherche	26
CIL	ADITDE 2 - MATEDIEL S ET METHODES	20
$C\Pi F$	Eshantillana	20
2.1	2.1.1. Caoutohou anatural	29
	2.1.2 Debugènes muth étimos	29
2.2	2.1.2 Polymeres synthetiques	31
2.2	Pomogeneisation des echantinons de caoutenoue naturei	33
	2.2.1 Principe	33
~	2.2.2 Proceaure	33
2.5	Reduction du taux de gel dans des solutions de caoutenoue naturel	35
	2.3.1 1 raitement au bromure de tetrabutylammonium	30
	2.5.2 Irifluoroacetate de 1,1,3,3-tetramethylguanidinium	36

2.4	Détermination de l'incrément d'indice de réfraction	36
	2.4.1 Principe	36
	2.4.2 Procédure	37
2.5	Chromatographie d'exclusion stérique couplée avec un détecteur à diffusion de	
	la lumière multi-angulaire (SEC-MALS)	38
	2.5.1 Matériels	38
	2.5.2 Procédure	40
2.6	Viscosité Mooney à vitesse variable	43
	2.6.1 Principe	43
	2.6.2 Matériels	43
	2.6.3 Procédure	43
2.7	Mesure du module complexe	44
	2.7.1 Théorie	44
	2.7.2 Matériels	45
	2.7.3 Procédure	45
CHA	PITRE 3 : CARACTERISATION DE LA MESOSTRUCTURE DU	
	CAOUTCHOUC NATUREL PAR SEC-MALS	47
3.1	Introduction	48
3.2	Détermination de l'incrément d'indice de réfraction de solutions de caoutchouc	
	naturel et de poly(cis-1,4-isoprène) de synthèse	49
	3.2.1 Introduction	49
	3.2.2 Résultats obtenus	51
	3.2.3 Conclusion	54
3.3	Characterization of natural rubber using size-exclusion chromatography	
	with online multi-angle light scattering: Study of the phenomenon behind	
	the abnormal elution profile*	56
	3.3.1 Introduction	57
	3.3.2 Experimental	58
	3.3.3 Results and discussion	60
	3.3.4 Conclusion	75
3.4	La quantité variable de gel dans le caoutchouc naturel a-t-il un impact sur les	
	paramètres de la structure macromoléculaire obtenus par SEC-MALS ?	76
	3.4.1 Introduction	76
	3.4.2 Résultats obtenus	76
	3.4.3 Conclusion	80
3.5	Influence de l'élution anormale sur les paramètres de structure	
	macromoléculaire obtenus par SEC-MALS	81
	3.5.1 Introduction	81
	3.5.2 Résultats obtenus	81
	3.5.3 Conclusion	84

3.6	Study of chain branching in natural rubber using size-exclusion abromatography coupled with a multi-angle light scattering detector (SEC	
	MALS)*	85
	MALS) ⁻	05
	3.6.2 Experimental	80
	2.6.2 Experimental	07
	3.6.5 Results and discussion	90
37	5.0.4 Conclusion	102
5.7		105
СНА	PITRE 4 : CARACTERISATION RHEOLOGIOUE DU CAOUTCHOUC	
	NATUREL PAR VISCOSIMETRE MOONEY A VITESSE VARIABLE,	
	ETUDE DES RELATIONS AVEC LA MESOSTRUCTURE	. 104
4.1	Introduction	. 105
4.2	Influence de la méthode d'homogénéisation sur la caractérisation du	
	caoutchouc naturel par viscosimètre Mooney à vitesse variable	. 106
	4.2.1 Introduction	106
	4.2.2 Résultats obtenus	. 106
	4.2.3 Conclusion	109
4.3	Better characterization of raw natural rubber by decreasing the rotor speed of	
	Mooney viscometer*	. 110
	4.3.1 Introduction	111
	4.3.2 Experimental	112
	4.3.3 Results and discussion	114
	4.3.4 Conclusion	126
4.4	Universalité de la relation entre la viscosité Mooney obtenue à 0,05 tr/min et la	
	$M_{\rm w}$: influence du taux de gel	. 127
	4.4.1 Introduction	127
	4.4.2 Résultats obtenus	. 127
	4.4.3 Conclusion	136
4.5	Discussion	. 137
CON	ICLUSIONS ET PERSPECTIVES	. 138
BIBI	LIOGRAPHIE	. 141
ANN	JEXE	. 150

LISTE DES FIGURES

Figure 1 : Structure théorique du poly(<i>cis</i> -1,4-isoprène) dans le NR de l' <i>Hevea</i> brasiliensis (Tarachiwin et al., 2005) ; m et n sont les nombres de motifs trans et cis par chaîne	7
Figure 2 : Différents types de distributions des masses molaires natives obtenus pour différents types de NR ; type 1 : bimodale avec deux pics égaux, type 2 : bimodale avec deux pics, type 3 : quasi-unimodale (Subramaniam, 1972)	8
Figure 3 : Effet de la mastication sur la DMM de NR, (a) TSR5CV du clone PR107,(b) TSR10 du clone PR107 (Ehabe <i>et al.</i>, 2006b)	10
Figure 4 : Représentation schématique de différentes architectures des polymères ramifiés : (a) en étoile avec $f = 3$, 4 et 8 branches, (b) en peigne et (c) dendrimère (Burchard, 1999)	11
Figure 5 : Représentation schématique de la ramification des chaînes de NR proposée par l'équipe de Tanaka (Tanaka <i>et al.</i> , 1997 ; Tangpakdee et Tanaka, 1997)	14
Figure 6 : Représentation schématique de la diffusion de la lumière par une macromolécule et la variation de l'intensité diffusée en fonction de l'angle de diffusion (θ); λ_0 longueur d'onde de la lumière incidente, I_0 et I_{θ} intensités de la lumière incidente et de la lumière diffusée.	15
Figure 7 : Caractéristique du rotor et de la chambre du viscosimètre Mooney ; R : rayon du rotor (19,05 mm), R_e : rayon de la chambre (25,4 mm), L : distance entre la surface horizontale du rotor et la chambre supérieure ou inférieure (2,54 mm) et h : épaisseur du rotor (5,54 mm)	20
Figure 8 : Courbes de viscosité Mooney d'un échantillon de NR obtenues avec différentes vitesses du rotor (Cantaloube et Cocard, 2004).	21
Figure 9 : Schéma montrant les étapes de préparation des échantillons : (a) TSR5, (b) TSR5CV ou TSR5CV60 (le latex d'un seul clone ou mélange de latex de deux clones), (c) TSR5CV60 par peptisation avec le Struktol LP152, (d) TSR10	30
Figure 10 : Chromatogramme (signal réfractométrique ou RI) présentant les distributions des masses molaires des échantillons modèles de NR en fonction du volume d'élution	32
Figure 11 : Chromatogramme (signal réfractométrique ou RI) présentant les distributions des masses molaires des échantillons de polyisoprène de synthèse (SR) en fonction du volume d'élution.	32

Figure 12 : Formule chimique du 1,1,3,3-tétraméthylguanidine (TMG).	36
Figure 13 : Représentation schématique de la SEC-MALS utilisée : (1) réservoir de la phase mobile, (2) dégazeur (Elite TM , Alltech), (3) pompe HPLC Waters 515 et filtre en ligne, (4) injecteur Waters 717 plus Autosampler, (5) 2 colonnes Waters Styragel HMW 6E, $4,6 \times 300$ nm (20 µm) ou 3 colonnes PLGEL MIXED-A, 7,8 mm × 30 cm (20 µm), thermostatées à 45°C, (6) détecteur à diffusion de la lumière DAWN DSP (Wyatt Technology Corporation), avec 18 angles de détection, longueur d'onde du laser 633 nm, (7) détecteur d'indice de réfraction Waters 2414, (8) poubelle	39
Figure 14 : Schéma de la cellule de mesure du détecteur à diffusion de la lumière multi-angulaire (Wyatt Technology).	39
Figure 15 : Extrapolation selon la méthode de Zimm aux pieds (a) et au milieu (b) du pic de chromatogramme d'un échantillon de SR (Natsyn2200)	42
Figure 16 : Système de matrice du rhéomètre D-MDR3000	45
Figure 17 : Le module G^* en fonction de la déformation (fréquence d'oscillation de 1,66 Hz) pour un échantillon de NR (1SAP21) à 130°C	46
Figure 18 : Ratios de la concentration et de la masse molaire moyenne en poids (M_w) (valeurs théoriques divisées par valeurs calculées par SEC-MALS) en fonction du dn/dc pour l'étalon PI7 ($M_w = 270$ kg/mol).	53
Figure 19: Chromatograms showing the refractometer (RI) and light scattering (LS, 90°) signals; (a) the molar masses (M_{wi}) and (b) the radius of gyration (R_{gi}) as a function of elution volume of Natsyn2200 (-) and AJ (-) samples.	62
Figure 20: Plots of weight-average molar masses (M_{wi}) versus elution volume for three NR samples and a synthetic poly(<i>cis</i> -1,4-isoprene) (Natsyn2200).	63
Figure 21: Structure proposed for poly(<i>cis</i> -1,4-isoprene) chains in natural rubber from <i>Hevea brasiliensis</i> (see Tarachiwin <i>et al.</i> (2005)), links between protein and poly(<i>cis</i> -1,4-isoprene) are assumed to be physical bonds, as for links between phospholipids and poly(<i>cis</i> -1,4-isoprene) chains.	64
Figure 22: Influence of TBABr concentration on oxidation for (a) a synthetic PI (IR305, same behaviour as for Natsyn2200, results not shown) and (b) a NR sample (1SAP21, same behaviour as for AM, results not shown) (always same concentration of TBABr in THF used in solvent and mobile phase).	65
Figure 23: Logarithmic plots of molar masses (M_{wi}) as a function of elution volume for a synthetic poly(<i>cis</i> -1,4-isoprene) (Natsyn2200) and NR sample 1SAP21 analyzed with different concentrations of TBABr in THF.	66

Figure 24: Chromatograms showing the light scattering (LS, 90°) signal for the NR sample 1SAP21 (no TBABr means the columns were never treated with TBABr)
Figure 25: The effect of TBABr concentration in THF on gel rate for the two NR samples (AM, 1SAP21) and a synthetic sample (Natsyn2200) (curves on the graph are just guides for the eyes used to approximate tendencies)
Figure 26: Log–log plots of R_{gi} versus M_{wi} for the synthetic poly(<i>cis</i> -1,4-isoprene) Natsyn2200 (•) and NR sample 1SAP21 (•) before TBABr treatment of the columns and NR sample 1SAP21 with 100 mg/mL of TBABr in the mobile phase (•)
Figure 27: Chromatograms showing the refractometer (RI) and light scattering (LS, 90°) signals, the molar masses (M_{wi}) and the radius of gyration (R_{gi}) as a function of elution volume for NR sample 1SAP21 injected in pure THF (solvent and mobile phase) after treatment of the columns with THF plus TBABr (3 g/L) 24 h before injection. 71
Figure 28: Example of the structure of an end group for zwitterionic end group ω -functionalized polyisoprene (PI) studied by Hadjichristidis <i>et al.</i> (1999)71
Figure 29: Chromatograms showing the light scattering (LS, 90°) signals as a function of elution volume for NR sample 1SAP21 injected in pure THF (solvent and mobile phase) 3, 15 and 60 days after treatment of the columns with THF plus TBABr (3 g/L). 72
Figure 30: Chromatograms showing the refractometer signal (RI) as a function of elution volume of a NR solution (AN) after filtrations through 0.45 μ m, 1 μ m and double filtration through 1 μ m then 0.45 μ m
Figure 31 : Indice de réfraction du chromatogramme indiquant la distribution des masses molaires du NR après les traitements avec 200 mg/L ou 0,62 mM de TBABr et avec 140 mg/L ou 0,3 mM de TMGTFA
Figure 32 : Evolution du taux de gel en fonction de la concentration du TBABr et du TMGTFA (échantillon 1SAP21)
Figure 33 : Représentations schématiques (a) des chaînes de NR associées par des interactions physiques dans le gel et (b) des chaînes du NR en pelote statistique en solution diluée
Figure 34 : Evolution du taux de gel des échantillons 1SAP21 (résultats obtenus à 0 et 6 mois de stockage après homogénéisation) et AM en fonction de la concentration du TBABr

Figure 47 : Corrélation entre les $V_{R ISO}$ et $V_{R SMR}$ pour 5 échantillons différents pour différentes vitesses du rotor, insert : pente de la corrélation V_{RISO} vs. V_{RSMR} en fonction de la vitesse du rotor.	108
Figure 48: Refractive index chromatograms obtained with SEC-MALS analyses showing the molar mass distributions for the monoclonal model samples	115
Figure 49: Variable speed Mooney viscosity for the monoclonal model samples (the lines are only guides for the eye)	116
Figure 50: Double-logarithmic plots of complex modulus, G^* , versus frequency for monoclonal model samples (0.3° arc strain (4.2%) at 130°C) (the lines are only guides for the eye).	116
Figure 51: Refractive index chromatograms obtained with SEC-MALS analyses showing molar mass distributions for the model samples prepared from blended latex of clones GT1 and PB217	119
Figure 52: Variable speed Mooney viscosity for the model samples prepared from blended latex of clones GT1 and PB217	119
Figure 53: Plots of V _R , (\blacktriangle) 2 rpm, (\bullet) 0.2 rpm and (\blacksquare) 0.05 rpm, versus M_n for the monoclonal and blended samples (see Table 18).	120
Figure 54: Correlations between G^* of monoclonal and blended samples measured at different frequencies: (•) 8 Hz, (•) 2 Hz and (\blacktriangle) 0.12 Hz, and (a) V _{R2} , (b) V _{R0.05} and (c) V _{R0.2}	121
Figure 55: Refractive index chromatograms obtained with SEC-MALS analyses showing the influence of peptization on MMD	124
Figure 56: Refractive index chromatograms obtained with SEC-MALS analyses showing MMD for the industrial samples	124
Figure 57: Variable speed Mooney viscosity of industrial samples (IA, IB and IC) 1	125
Figure 58: Graphs of V_R versus M_w for rotor speeds (a) 2 rpm and (b) 0.05 rpm for: (•) family 1 model samples, (•) model samples prepared from blend latex, (×) family 2 peptized samples and (*) industrial samples with $V_{R2} = 60\pm 5$ uM (TSR5CV60)1	125
Figure 59: Graphs of V _R versus $M_w I_p^{-1/2}$ for rotor speed 0.05 rpm for: (•) family 1 model samples, (•) model samples prepared from blend latex, (×) family 2 peptized samples and (*) industrial samples with V _{R2} = 60±5 uM (TSR5CV60)1	126

Figure 60 : Relations (a) entre la V_{R2} et M_n , (b) entre la $V_{R0.05}$ et M_w , et entre (c) $V_{R0.05}$ et M_w $I_p^{-1/2}$, pour les échantillons (•) TSR5CV60, (\diamond) AI (TSR5CV60), (\times) TSR5CV60 peptisé, ($*$) TSR5CV60 industriel, (•) TSR5CV mélange des clones, (\Box) TSR5CV monoclonal et (\circ) polyisoprène de synthèse.	129
Figure 61 : Courbes de V_R des échantillons de SR industriels en fonction de la vitesse du rotor (les courbes sont les guides pour les yeux)	130
Figure 62 : Relations entre (a) la V _{R2} et M_n , entre (c) V _{R0.05} et M_w et entre (c) V _{R0.05} et $M_w I_p^{-1/2}$, pour les échantillons (+) TSR10 et (\triangle) TSR5, les droites de corrélations ont été obtenues avec des échantillons TSR5CV (voir Figure 60)	131
Figure 63 : Corrélation entre la V _{R0.05} et leurs modèles linéaires multivariable (a) $V_{R0.05} = \alpha + \beta_1 M_w + \beta_2 Gel$ (b) $V_{R0.05} = \alpha + \beta_1 M_w I_p^{-1/2} + \beta_2 Gel$ pour les échantillons (•) TSR5CV60, (\diamond) AI (TSR5CV60) (\times) TSR5CV60 peptisé, ($*$) TSR5CV60 industriel, (\bullet) TSR5CV mélange des clones, (\Box) TSR5CV monoclonal, (+) TSR10, (\triangle) TSR5 et (\circ) polyisoprène de synthèse.	133
Figure 64 : Evolution de la viscosité de cisaillement (η) en fonction de la vitesse de cisaillement ($\dot{\gamma}$) et des modèles de Cross obtenus (Eq. (32)) pour (a) des échantillons de NR et (b) des échantillons de SR.	135
Figure 65 : Corrélation entre la viscosité de cisaillement correspondant à la vitesse du rotor de 0,05 tr/min ($\eta_{0.05}$) et la V _{R0.05} pour les échantillons de NR et de SR	136
Figure 66 : Plantation d'hévéa et saignée d'un hévéa	151
Figure 67 : Répartition de la production de caoutchouc naturel dans le monde	152
Figure 68 : Utilisation du caoutchouc naturel en industrie	152
Figure 69 : Présentation schématique des principales étapes de l'usinage du caoutchouc naturel.	153

LISTE DES TABLEAUX

Tableau 1 : Tableau récapitulatif des paramètres de mésostructure (taux de gel, masses molaires moyennes en nombre (M_n) en poids (M_w) et en z (M_z) , et indice de polymolécularité (I_p)) obtenus par SEC-MALS (extrapolation par la méthode de Berry d'ordre 2), plasticité initiale (P_0) , augmentation de plasticité après durcissement au stockage accéléré (ΔP) et viscosités Mooney obtenues à 2 et 0,05 tr/min (V _{R2} et	22
$V_{R0.05}$) des échantillons de NR homogénéisés selon la méthode SMR et de SR	. 33
Tableau 2 : Dilution des solutions de NaCI par pesee	. 38
Tableau 3 : Emplacements des 18 détecteurs par rapport au sens du laser incident	. 40
Tableau 4 : Conditions de mesure de viscosité Mooney à vitesse variable	. 44
Tableau 5 : Valeurs des d <i>n</i> /d <i>c</i> trouvées dans la littérature pour des solutions du NR et du SR dans le THF.	. 51
Tableau 6 : Valeurs du dn/dc à 633 nm des solutions des étalons de poly(<i>cis</i> -1,4- isoprène) monodisperses (PI) et du NR dans le THF déterminées en utilisant un réfractomètre Optilab DSP ^(a) .	. 52
Tableau 7 : Comparaison des M_w et concentrations théoriques des étalons de PI avec les valeurs obtenues par SEC-MALS avec un $dn/dc = 0,13$ mL/g	. 54
Table 8: Gel rate, number-average molar mass (M_n) , weight-average molar mass (M_w) , <i>z</i> -average molar mass (M_z) and the <i>z</i> -average radii of gyration (R_{gz}) calculated integrating the all distribution, before treatment of the columns with TBABr ^(a) (3 replicates/sample).	61
Table 9: Nano-aggregates of three NR samples characterized by SEC-MALS (solvent: pure THF) (3 replicates/sample).	70
Table 10: Effect of filtration on apparent gel rates and average molar masses of natural and synthetic poly(<i>cis</i> -1,4-isoprene) samples after filtrations through filters of different porosities ^(a) .	74
Tableau 11 : Effets des traitements au TBABr et au TMGTFA sur les paramètres de la mésostructure d'un échantillon de NR (1SAP21).	. 78
Table 12: SEC-MALS analyses of standard linear PS using the Zimm and Berry fit methods (mean values of 2 replicates).	91

Table 13: SEC-MALS analyses of standard linear PI using the Zimm and Berry fit methods (mean values of 3 replicates).	. 92
Table 14: SEC-MALS analyses of industrial synthetic poly(<i>cis</i> -1,4-isoprene) and natural rubber samples using the Zimm and Berry fit methods.	. 93
Table 15: Contraction factor (g) and number of branched points per chain (m_4) of industrial synthetic poly(<i>cis</i> -1,4-isoprene) and natural rubber samples at M_{wi} 6,000 kg/mol obtained with SEC-MALS using Berry fit method.	. 99
Tableau 16 : Viscosité Mooney à 2 tr/min (V_{R2}) et la différence en V_{RX} ^(a) entre les méthodes d'homogénéisation SMR et ISO pour les 5 échantillons étudiés	108
Tableau 17 : Paramètres de mésostructure des échantillons après homogénéisations selon les méthodes ISO et SMR.	109
Table 18: Structural parameters and Mooney viscosities of TSR5CV monoclonal and blended samples.	117
Table 19: Relationships between rotor speed, frequency and shear rate	120
Tableau 20 : Viscosité Mooney (V _R), viscosité de cisaillement à 2 et 0,05 tr/min (η_2 et $\eta_{0.05}$), viscosité limite (η_0) des échantillons TSR5CV60.	134
Tableau 21 : Caractéristiques types du caoutchouc granulé spécifié techniquement (ISO 2000:2003).	154

INTRODUCTION GENERALE

Le caoutchouc naturel (NR, *natural rubber*) est un biopolymère obtenu par la coagulation du latex de plusieurs plantes, mais l'hévéa (*Hevea brasiliensis*) est la seule source commerciale de ce biopolymère. Actuellement, le NR est le seul élastomère d'origine biologique utilisé dans des applications industrielles. Ses bonnes propriétés viscoélastiques et dynamiques le distinguent des élastomères synthétiques et lui permettent d'être utilisé comme matière première irremplaçable pour la fabrication de matériaux spécifiques tels que les pneus des camions, les supports moteurs des véhicules, les joints antisismiques, etc. Par ailleurs, grâce à sa souplesse, le NR est également employé pour les fabrications des gants et des préservatifs. Sa consommation annuelle mondiale, en 2007, a été de près de 10 millions de tonnes, contre environ 13 millions de tonnes de caoutchoucs synthétiques, et a rapporté environ 16 milliards d'euros aux producteurs des pays du Sud.

Le NR est constitué de poly(cis-1,4-isoprène) de hautes masses molaires avec certaines irrégularités de la structure chimique dues à la présence sur les chaînes de groupements fonctionnels dits « anormaux » tels que des aldéhydes, des époxydes, des lactones et des esters. Il renferme également 3-5% de composés non-isoprènes tels que des glucides, des lipides, des protéines et des minéraux, qui rendent sa structure très complexe et variable car certains de ces composés réagissent avec les groupements anormaux pour former des ramifications sur les chaînes et des agrégats ou gel. Pour minimiser cette variabilité et rendre les propriétés du NR aussi stables que les caoutchoucs synthétiques, les producteurs ont employé certaines méthodes de production, telles que l'utilisation des latex provenant de clones spécifiques, le traitement du latex aux produits chimiques, etc. C'est notamment le cas du grade TSR5CV (constant viscosity technically specified *rubber*¹), auquel notre travail sera essentiellement consacré. Ce grade, fabriqué par le traitement du latex à l'hydroxylamine, contient un faible taux de gel et a une viscosité Mooney stabilisée. Malgré tout, le NR de ce grade TSR5CV reste plus variable que les caoutchoucs synthétiques. Notamment, les pièces de NR extrudées présentent plus de nonconformités dimensionnelles que celles réalisées avec des caoutchoucs synthétiques. Ce

¹ TSR : *Technically Specified Rubber*, le caoutchouc techniquement spécifié sous forme de balle compacte de 33,33 kg ou 35 kg est obtenu par coagulation contrôlée du latex suivie de granulation, de séchage et de compactage (norme ISO 2000, cf. Annexe 1).