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Abstract

Sustainable energy development plays a prominent role in energy planning to maintain natural resources and mitigate the
usage of fossil fuels. The atmospheric factor is one of the main influencing factors that changed the electricity consumption’s
behavior due to global warming. In this study, the recurrent neural network (RNN) models were developed to examine the effects
of 66 climate variables, collected from the European Center for Medium-Range Weather Forecast (ECMWF) ERA5 reanalysis,
on power demand in Cambodia. The statistically significant climate variables were filtered by considering the cross-correlation
between power demand and each climate variable. Moreover, the wide range of feedback delays was computed from the power
demand dataset and was defined using the 95% confidence intervals. The comparison between a nonlinear autoregressive neural
network with exogenous inputs (NARX) using historical power demand with the correlated climate variables and a nonlinear
autoregressive neural network (NAR) using only historical power demand dataset was made. The various benchmarked models
were evaluated and compared for their performances using statistical indices such as normalized root-mean-square error (NMSE)
and coefficient of determination (R2). The results showed the NARX model could perform better than the NAR model for
predicting electricity demand time-series.
© 2022 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

Energy planning on the demand side is the crucial task for addressing in terms of sustainable development against
the global warming caused by fossil fuel generations. Demand management provides particular aspects of the future
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perspective for decision-makers to manage the energy mix’s green and clean energy generations. When the demand
and supply are imbalanced, the fossil fuel generations would probably be prioritized for solving the emergency
situation; however, those generations could definitely produce the CO2 emission with the unaffordable price in the
global power market.

Goal number seven among 17 sustainable development goals (SDGs) describes the guaranteeing accessibility of
affordable, reliable, sustainable, and modern energy for all [1]. Therefore, well-prepared electricity demand planning
is entirely crucial for the reliability and sustainability of the energy supply. At the same time, numerous factors could
affect electricity consumption, such as climate factors (temperature, dewpoint, and so on) and socio-economic factors
(population, gross national product, imports and exports, occupants, family composition, household income, and so
on) [2,3]. Therefore, the objectives of this study are described as follows:

• Development of the optimized recurrent neural network (RNN) models for future prediction of electricity
demand.

• Identification of the correlated climate variables for using in the NARX model to improve prediction outcomes.
• Comparison of prediction techniques using (i) NAR model using historical data, and (ii) NARX model with

historical electricity demand and climate variables, in terms of their performance.

2. Materials and methods

2.1. Study area and data

The locations of substations and data used in this study were presented in Fig. 1. The main criteria for site
selection were based on the available data from 2013 to 2018 for power demand and the ECMWF-ERA5 Reanalysis
climate variables in Phnom Penh city (GS1, GS2, GS3, and WPP site), as shown in Fig. 1. In this study, electricity
demand data is collected for six years from January 01, 2013, to December 31, 2018, with 52,584 data points. Hourly
electricity demand data in megawatts [MW] from each substation were converted to daily intervals by taking power
demand value at 10:00 (peaking time in Cambodia) with 2191 data points.

Fig. 1. Map of Cambodia with the locations of grid substation (GSs) and the coverage area of the nearest ECMWF-ERA5 Reanalysis grid
points in blue-shaded circles (left) and the color shades indicates the 2-meter dewpoint temperature climate data of ERA5 Reanalysis at
00:00 on January 1, 2013 (right).

2.2. Artificial neural network - NAR and NARX neural networks

A nonlinear autoregressive model (NAR) and a nonlinear autoregressive model with exogenous inputs (NARX)
are among the groups of recurrent neural networks (RNNs). Also, NARX and NAR are nonlinear dynamic models
that fit the time series prediction [4]. NAR neural network model is used the historical dataset only as the input
data to predict itself for future values [5]. The output function of the NAR model can be mathematically given in
Eq. (1):

y(t) = f (y(t − 1), y(t − 2), . . . , y(t − dy)) (1)
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where y is the historical power demand dataset over (t) time, dy is the feedback delay (FD) or lagged feedback
output, and f is the activation function in the neural network model. The feedback delay impacts the closed-loop
simulated production as well as multistep predictive outcome, and it was defined by determining the auto-correlation
function of the input dataset (power demand). Consequently, sufficient feedback delay is crucially important, which
permits the training process could visibly understand the characteristic of the historical data.

In this study, the critical configurations for the NAR model are described as follows:

• The FDs were determined by autocorrelation of the training dataset, and all significant values were used as
feedback delays in the model (FD = [1:397,475:527,660:1271,1304:1332]), as shown in Fig. 3.

• For defining the number of hidden layer neurons, the value is set differently, based on case studies with ten
neurons [6], 15 neurons [7], ranging between 3 to 10 [8], and ranging between 1 to 20 [9]. Therefore, the
trial-and-error procedure is applied by investigating the number of hidden layer neurons ranging from 1 to 20.

• Transfer function: Since feedback delays were used many values, the performance of training time is
technically the constraint for this model. Kumar and Murugan [10] suggested scaled conjugate gradient
backpropagation (trainscg) which is appropriate to be used in this model for reducing training memory and
time.

• Activation function of hidden and output layers: Sarkar et al. [11] found that tangent-sigmoidal (tansig) transfer
function (Eq. (2)) could provide better results based on error evaluation in the training process and was
accordingly considered as the activation function for the hidden layer and linear function (Purelin) (Eq. (3))
in the output layer in this study.

• The weights and bias of this model: Updating with random initialization of weights and biases were set from
1 to 10 neuron sizes as the trial-and-error approach uses the double loop in each number of hidden layer
neurons that lead to 200 tests [12].

F (x) =
2

1 + e−2x
− 1 Tangent Sigmoid (tansig) (2)

F (x) = x Positive Linear (purelin) (3)

The NARX has the same structure as the NAR model, but the NARX model has external inputs, as described in
Fig. 2. Therefore, the equation of the NARX model is expressed as Eq. (4).

y(t) = f (y(t − 1), y(t − 2), . . . , y(t − dy), x(t − 1), x(t − 2), . . . , x(t − dx)) (4)

where x is the exogenous input dataset, and dx is the input delay (ID). The NARX’s configurations are based on the
NAR’s configuration; nonetheless, ID and correlated input variables need to be explored. Since 66 ERA5 climate
variables could be utilized as the inputs in the NARX model, statistically significant variables were evaluated from
the total of ERA5 climate variables by employing the cross-correlation function between power demand and ERA5
climate variables. In site GS1, the most six correlated climate variables were found as the exogenous inputs of the
NARX model, and the input delays were chosen from 0 to 2 as vector value (dx ≥ 0).

The performance of models was evaluated by using error indices: normalized root-mean-square error (NMSE)
[13], coefficient of determination

(
R2

)
, mean absolute error (M AE, [MW ]), mean absolute percentage error

(M AP E, [%]), and root-mean square error (RM SE, [MW ]), were expressed as given in Eq. (5) to Eq. (9).
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