Research article

Change in Effectiveness of Stung Chinit Irrigation System within a Social Economic in Santuk District, Kampong Thom Province

SAVEN THAI*

Faculty of Agricultural Technology and Management, Royal University of Agriculture, Phnom Penh, Cambodia

Email: savenlypoc@gmail.com

SOKHEM PECH

Pech Climate System Consultancy and Research, North Vancouver, BC, Canada

LYTOUR LOR

Faculty of Agricultural Engineering, Royal University of Agriculture, Phnom Penh, Cambodia

NARETH NUT

Faculty of Agricultural Engineering, Royal University of Agriculture, Phnom Penh, Cambodia

Received 16 November 2015 Accepted 11 April 2016 (*Corresponding Author)

Abstract Functional irrigation system is one of the most important mechanisms for preventing or minimizing crop failure, and increasing crop yields and cropping calendars. It is functional, if it is properly designed, built, operated and maintained, as well as climate-proofed. It is projected that the climate change effects – flood, drought, and temperature rise – will adversely affect water availability, hence impacting the reliability of the irrigation system and its services. The findings illustrate that Chinit Irrigation System faces several challenges such as insufficient budget for operation and maintenance, especially for repairing the broken earthen canals caused by heavy traffic, cattle, crabs and mice, and flooding. After construction, rice yield, land size and seasonal growing are increased and most of the farmers within the system coverage could access enough water for irrigation, so farmers' livelihood is improved. After completing the infrastructure, households' average net-income increased from 2.44 to 3.14 million riel per household. There are other income sources such as small business, construction and factory workers, taxi-driver and so on that can be further diversified as the competition for water use is expected due to climate change and an increase in water demand in this Watershed.

Keywords Stung Chinit, irrigation system, effectiveness, climate change

INTRODUCTION

Irrigation system is an artificial construction which ideally can store water and drain in or out the water when it is needed. Currently, construction and rehabilitation of irrigation have become one of the top priorities set by the Government, international organizations, private companies, and other donors. They have actively involved in its development to support farmers and water users to secure water to irrigate their farming in both rainy season's supplementary irrigation and wet season (Sakhoeurn, 2006). Construction of irrigation systems, including their maintenance and operations are supposed to contribute to poverty reduction and achievement of the ambitious milled rice-export target set by the Government (CGIR, 2014). According to the Food of Agriculture Organization (FAO, 2010), the average dry season rice yield has increased from 1.39 tons to 2.07 tons per hectares. However, their

prospects may be challenged by the current climate hazards and long-term climate change as they have been identified as significant environmental and developmental issues in Cambodia. Climate variability and extremes are presently manifested in ways such as floods, droughts, storms, increased coastal erosion, heat waves, and outbreaks/intensification pests and diseases (MOE 2013). All these changes have both positive and negative impacts on the agriculture including the irrigated farm land. These challenges affect the irrigation system's reliability and effectiveness because of drought and whereas overflow and extreme flood can damage the system (MOE, 2014). For the last 15 years, Cambodia has severely affected by the climate variability and change's events such as extreme flood, windstorms, and droughts. These frequent disasters and poor maintenance and operation damaged many infrastructures such as road, street and irrigation system (FAO/WFP, 2012). Climate change is expected to exert compounded pressure on Cambodia's water resources, which will be significantly altered by hydropower development and withdrawals for irrigation expansion within and beyond Cambodian borders. Prevailing poor infrastructure conditions and operation and maintenance of the system also remain a significant factor contributing to current and future vulnerability of systems to climate change (MOE, 2013).

OBJECTIVE

The research was conducted for the following two main objectives:

- 1) To identify the potential and constrains of Irrigation System;
- 2) To compare of farmers' livelihood level before and after constructing irrigation infrastructure

METHODOLOGY

The research was conducted in 3 villages, namely, Khvaek, Banteay Yumreach, and Pleyplo villages. To collect the data, primary data and secondary data (asking households, key informants, related institutes and observation) was implemented. 84 households were sampled for interviews and three Focus Group Discussion were also carried out to validate and obtain more quantitative information. All the collected data was analyzed by Statistic Package for Social Science (SPSS and Excel).

RESULTS AND DISCUSSION

Change in Rice Cultivation Calendars

The result in Table 1 indicates that before irrigation scheme, most of the farmers in the three villages cultivated their rice later in rainy season from June to December, because of concern over the water availability during the early phase of rainy season, as most of them heavily relied on rainfall for 61%, 82%, and 67% respectively in Khvaek, Prey Phlu, and Banteay Yumreach villages. Whereas after the Chinit irrigation infrastructure was put in place, 65% of households in Khvaek and 77% in Prey Phlu started to cultivate the rice from May to November relying on water from the irrigation system. However, the farmers in Banteay Yumreach still continue with old cropping calendar from June to December, because of their higher land elevation, and lack of paddy level irrigation canals through their rice field, and some farmers near the canal do not allow the water to the other fields. Furthermore, because of the canals in the upper-land are deeper than the paddy field, it has to operate by more costly pumping.

Table 1 Farmers' calendar rice before and after constructing irrigation scheme

Villages	Wet rice before scheme			Wet rice after scheme		
	May-Nov	Jun-Dec	Jul-Jan	May-Nov	Jun-Dec	Jul-Jan
Khvaek	21.70%	60.90%	17.40%	65.20%	34.80%	0.00%
Prey Phlu	11.77%	82.35%	5.88%	76.50%	23.50%	0.00%
Banteay Yumreach	16.70%	66.70%	16.60%	31.80%	61.40%	6.80%

Means for Irrigation

Fig.1 illustrates that there were only 4.34% of households irrigated their farm by gravity, 21.73% by pumping and gravity, and 73.91% by rainfall before constructing irrigation system. Whereas the farmers in Prey Phlu village, there were only 5.88% of households irrigating their farm by gravity, 5.88% by pumping and gravity, and 88.25% relying on rainfall while the farmers in Banteay Yumreach were 27.27% by gravity, 18.18% by gravity and pumping, and 55.55% by rainfall. After construction of the Chinit irrigation system, 100% of farmers in Prey Phlu, 52.17% in Khvaek, and 72.73% in Banteay Yumreach irrigated their farming by gravity, and they stopped relying on rainfall.

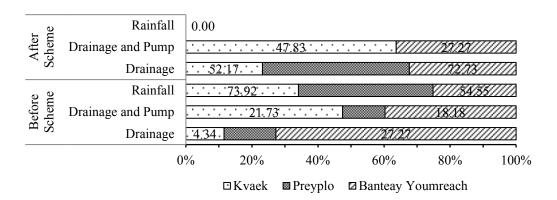


Fig. 1 Ways of farmer for irrigating their farming before and after scheme

Farmland Size Before and After Constructing Irrigation Scheme

Figure 2 shows the paddy field and crop-land size per hectare per household before and after constructing the irrigation scheme. The rice-land of the two villages, Khaek and Banteay Yumreach was slightly increased of 0.04 and 0.12 hectare per household, respectively, whereas the paddy field size of Prey Phlu remained the same. Increasing in paddy field size and production in the two villages were possible because the farmers could get enough water and reclaim available forest land, and increase their outputs to generate more income for supporting the everyday lives of their growing families. In contrast, the other crop-land size of three villages has decreased marginally from 0.55 to 0.122, 0.32 to 0.30, and 0.37 to 0.30 respectively in Khvaek, Prey Phlu and Banteay Yumreach. This was because some of the farmers could not grow vegetables in the cropland and the fields have too much water coming from the canal, and some others grow rice instead of cropping.